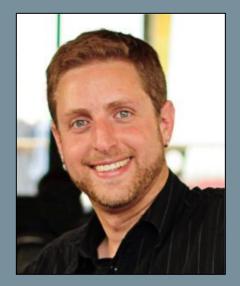
KineTrax

Team KineJax


Team Members: Anthony Black, Jack Jenkins, Cherie Parsons, Grant Swenson, and Chris Whitney

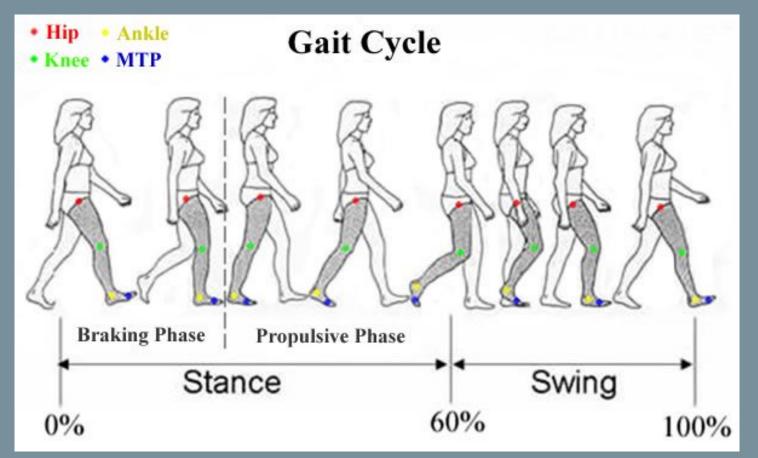
Client/Sponsor: Kyle Winfree

Mentor / Client

Faculty Mentor / Client

- Kyle Winfree
 - BS Physics
 - MES Robotics
 - PhD Biomechanics and Movement Science
- Part of SICCS department at NAU
- Interested in:
 - Using wearable technology to measure and improve healthcare.

Background - Wearables



Background - Gait Analysis

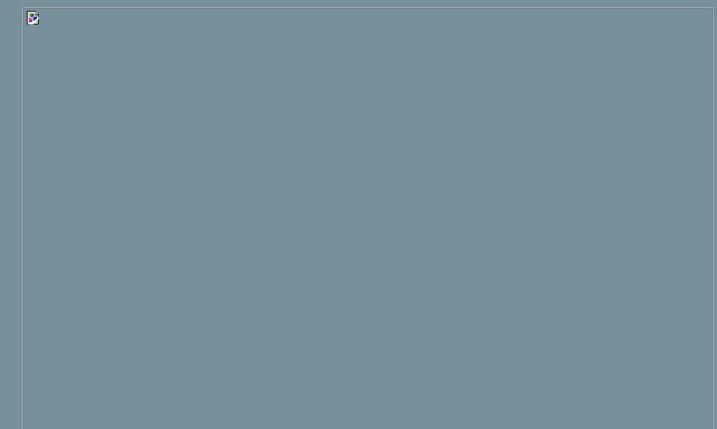
Problem Statement

Current wearable devices are unable to interface with other devices/sensors and are unable to give the necessary resolution for gait analysis in a community setting.

Limitations

Current wearable devices:

- Unable to interface with other devices
- No synchronization across a distributed network
- Doesn't yield the resolution of measurements as other capturing systems (i.e. Vicon)

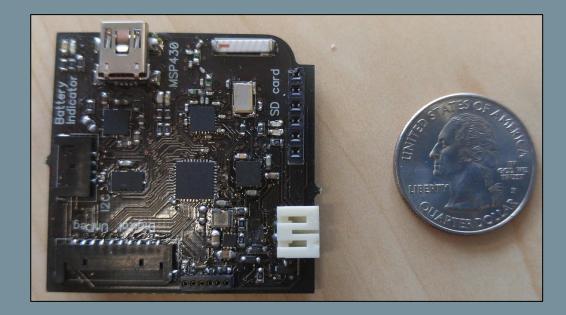

	Fitbit	ActiGraph	Vicon			
Interface w/ devices	\odot	\checkmark	\checkmark			
Sync	0	0	\checkmark			
Resolution	1 min	30-100 Hz	100+ Hz			
Cost	Low	Expensive	Expensive			

Why is this important?

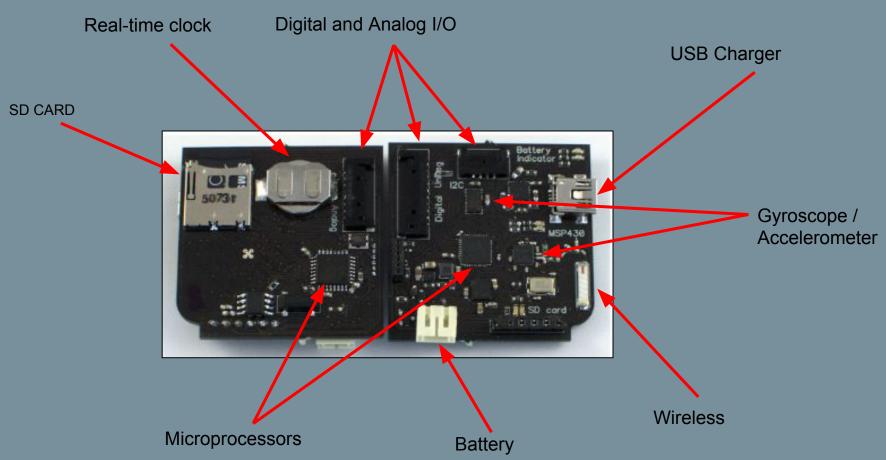
Information technologies (i.e. data acquisition and storage) is rapidly growing, however, the technologies that sensor and record our movement are not keeping up. This data, if occured could help:

- scientists ask interesting questions
- doctors make more informed and appropriate treatment decisions
- those with movement impairments live normal lives

Solution Overview


Solution - KineTrax

What the KineTrax offers:


- Digital I/O ports
- Analog I/O ports
- I2C bus, allowing 127 sensors/peripherals

What does this mean?

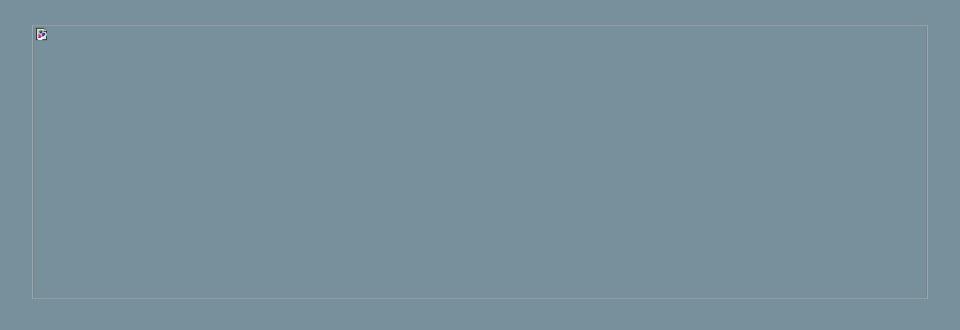
 Not limited to medical research

Key Components

Examples of I/O Devices

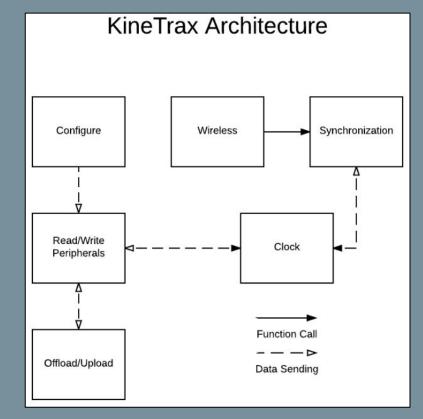
Input (Sensors, etc.)

Output (Actuators, etc.)

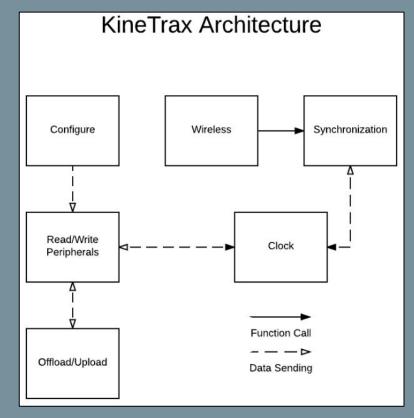


Requirements Review

Key Requirements:


- Record/offload timestamped gyroscopic & accelerometer data
- GUI to configure peripherals
- Wireless communication between devices
- Time synchronization between devices

Architecture Overview


Implementation Overview(Embedded)

- Offload/Upload
 - Reads and writes data from SD card
 - Communicates with connected PC
- Configuration
 - Sets peripheral addresses and sample rates
- Peripherals
 - Peripherals accessed through Inter-Integrated Circuit (I2C) and Universal Asynchronous Receiver/Transmitter (UART)


Implementation Overview(Embedded) (cont.)

- Real-time Clock
 - Timekeeping unit on the device
- Wireless Communication
 - Communicates with other Kinetrax devices in network
- Synchronization
 - Calculates offset between time from Real Time Clock and time received from wireless messages.

Implementation Overview(PC)

- Offload Data from Device
 - Reading data from device
 - Raw data to CSV
- Configuration
 - Loading from configuration file
 - Saving to configuration file
 - Setting configuration on device

Prototype Video Demo

Prototype - Config GUI

Challenges and Resolutions

Big Challenges:

- Debugging
- Embedded systems
 - Learning curve for embedded systems
 - Acronyms (UART, I2C, SPI, etc.)
- Hardware issues
 - Sensor issues
 - RTC and wireless can't work simultaneously
- Existing code has minimal documentation

Resolutions:

- Research
 - Existing documentation / sample code
 - Embedded systems books
 - Texas Instruments forums
- External sensors
- Hardware redesign

Schedule

Legend	
Completed	
In-progress	
Postponed	

Task/Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1. Embedded																
Get time from RTC																
Set time of RTC																
Write to SD												_				
Read from SD																
Sample sensors																
Wirelessly send messages											-					
Wirelessly recieve messages									_		_					
Time-synchronization																
Configuration functionality								_								
2. GUI																
Save data to CSV																
Save configurations file																
Load configuration file						_										
Communication w/ device																
Add peripheral																
3. Testing																
Vicon testing																

Testing Plan

Unit Testing

- Wireless sending and receiving
- Writing and reading from the SD
- Setting and reading the real-time clock

Integration Testing

- Vicon system at the Human Performance Lab
 - Compare the accelerometer/gyro for different movements

Usability Testing

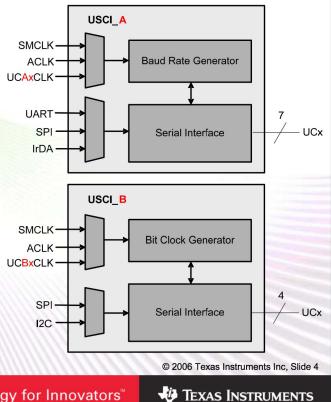
• Testing GUI with 4 participants

Conclusion

KineTrax has the potential to benefit lots of areas:

- Movement impairments
- Prosthetic limbs
- Sports medicine
- Farm animals

Lots of progress has been made:


- Device can sample sensors
- Device can get time from RTC
- Device can wirelessly communicate
- Writing samples to SD
- GUI loads configuration file
- GUI can save configuration file

References

- 1. http://evenamed.com/eyes-on-glasses/
- 2. http://www.fabricatingandmetalworking.com/2015/02/waterjet-used-make-prosthetic-limb/Winfre e
- 3. <u>http://www.pcclassesonline.com/fitbit-charge-hr-vs-surge-review-and-tutorial/</u>
- 4. <u>http://www.operationward57.org/2011/03/new-bionic-prosthetic-for-lower-leg-amputees/</u>
- 5. <u>http://toughasia.com/blog/wearable-tech-vylyv-labs-smart-shorts-enable-men-to-strengthen-pelvi</u> <u>c-floor-muscles/</u>
- 6. <u>https://www.amazon.com/Programming-Embedded-Systems-Development-Tools/dp/059600983</u> <u>6</u>
- 7. <u>https://www.pearsonhighered.com/program/Gajski-Specification-and-Design-of-Embedded-Syst</u> <u>ems/PGM30685.html</u>
- 8. <u>http://www.quintic.com/education/case_studies/Gait%20Analysis.html</u>
- 9. https://electrosome.com/wp-content/uploads/2014/12/Force-Sensing-Resistor-0.5.jpg

What is the USCI?

- Universal Serial **Communication Interface**
- Two independent blocks
- USCI A:
 - UART
 - UART with automatic Baud rate detection (LIN support)
 - IrDA (SIR Slow InfraRed)
 - SPI (Master & Slave, 3 & 4 wire)
- USCI B:
 - I2C (Master & Slave modes)
 - SPI (Master & Slave, 3 & 4 wire)
- In high-end 2xx and 4xx devices

Technology for Innovators[™]